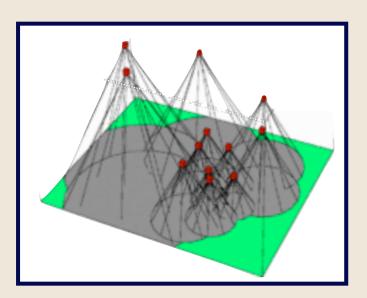
Overcoming Limitations of Game-Theoretic Distributed Control

Jason R. Marden California Institute of Technology

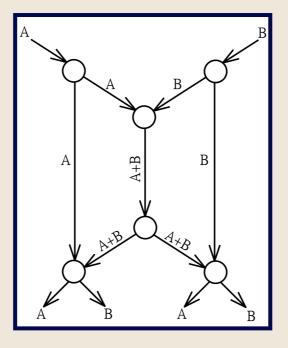
(joint work with Adam Wierman)

Southern California Network Economics and Game Theory Symposium October 1, 2009

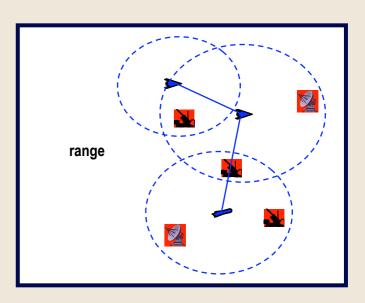
Trend: Transition from centralized to local decision making



Sensor coverage



Network Coding



Vehicle Target Assignment

Appeal

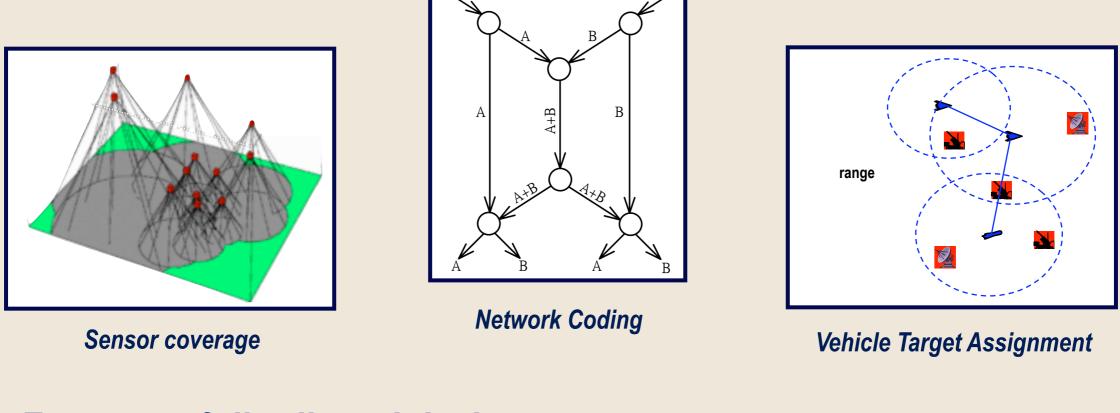
Local processing (manageable) Reduces communication Robustness

Challenges

Characterization Coordination Efficiency

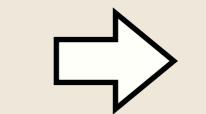
How should we design distributed engineering systems?

Trend: Transition from centralized to local decision making

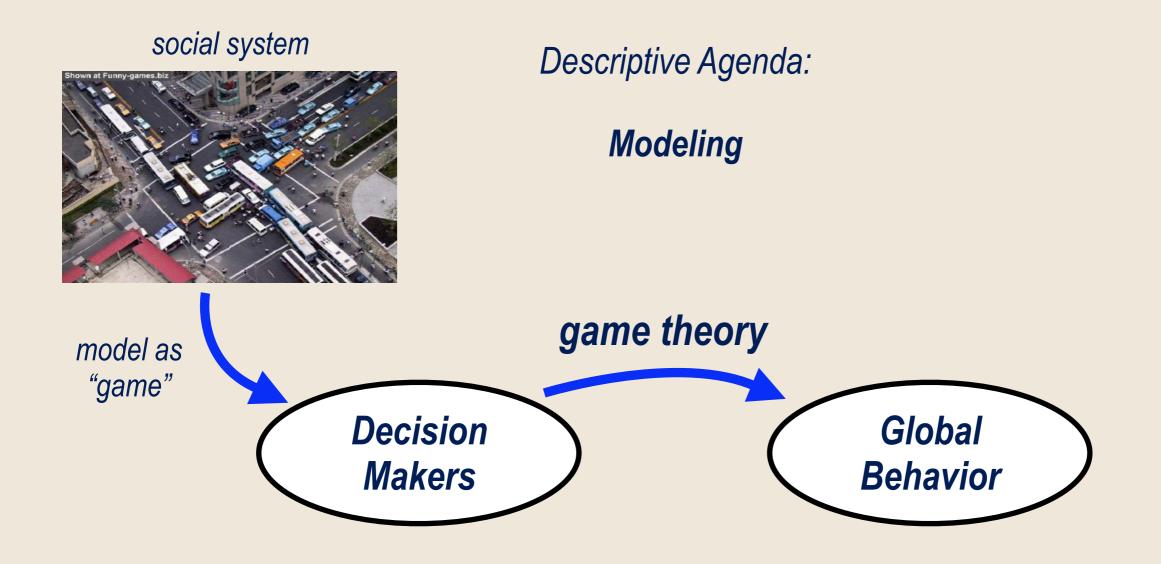


Features of distributed design:

- Local decisions
- Local information



Global behavior depends on local decisions

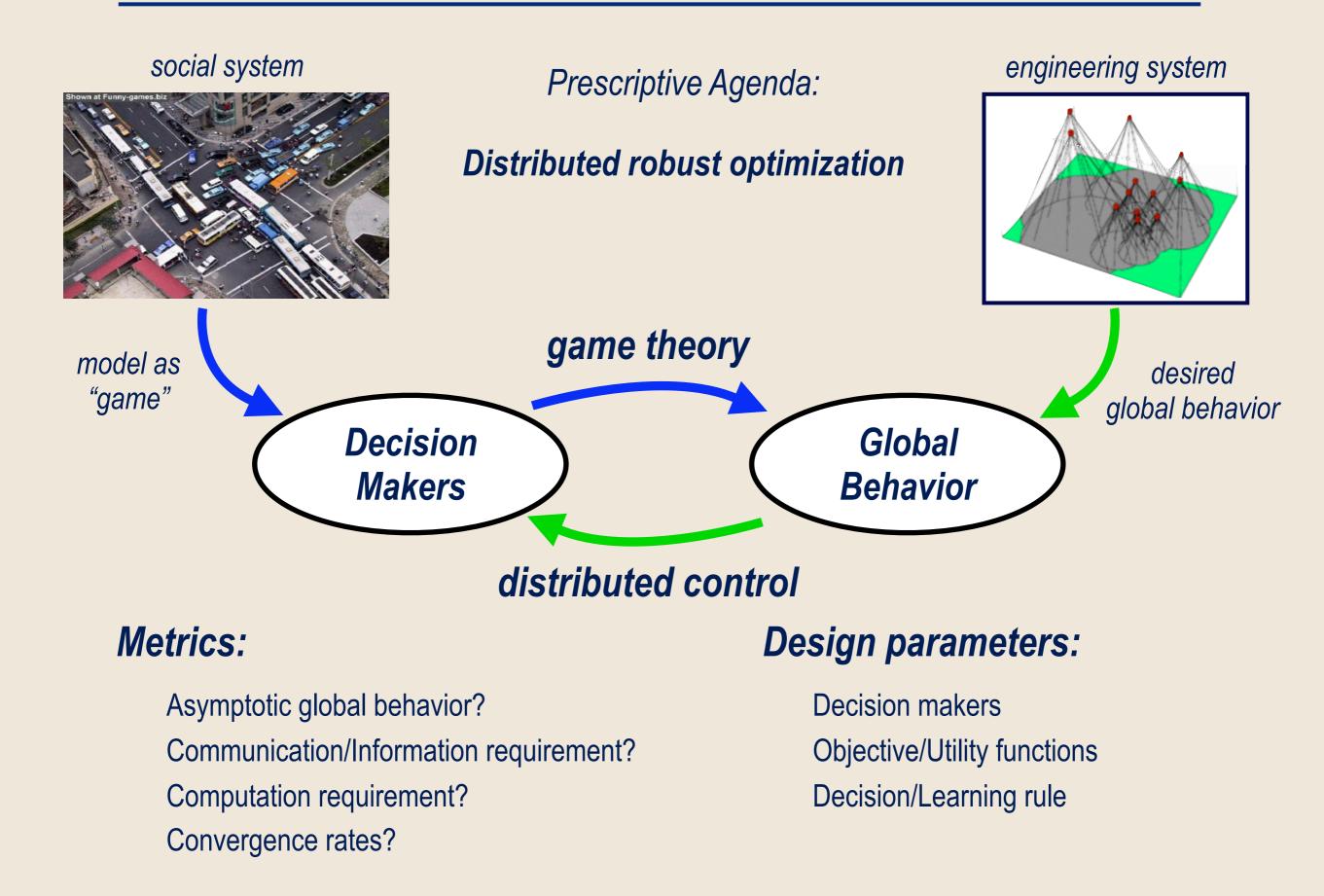


Metrics:

Reasonable description of sociocultural phenomena?

Matches available experimental/observational data?

Game theory



Game theory for distributed robust optimization

Part #1: model interactions as game

decision makers / players possible choices local objective functions

Part #2: local agent decision rules

informational dependencies processing requirements

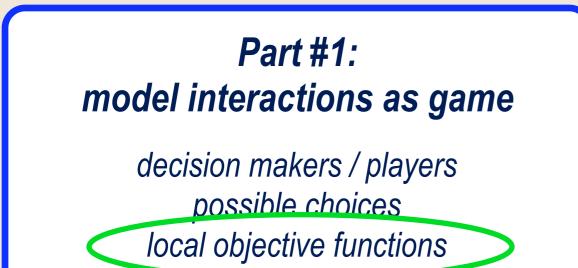
Goal: Emergent global behavior is desirable

Appeal:

available distributed learning algorithms robustness to uncertainties self-interested users?

convergence rates?

Game theory for distributed robust optimization



Part #2: local agent decision rules

informational dependencies processing requirements

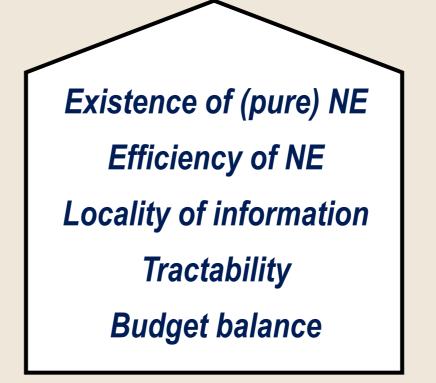
Goal: Emergent global behavior is desirable

Appeal:

available distributed learning algorithms robustness to uncertainties self-interested users?

convergence rates?

Goal: Establish methodology for designing desirable utility functions



Outline:

- Propose framework to study utility design: *Distributed welfare games*
- Identify methodologies that guarantees desirable properties
- Identify *fundamental limitations*
- Propose new framework to overcome limitations

Non-cooperative game:

- Players: $N = \{1, 2, ..., n\}$
- Actions: $a_i \in \mathcal{A}_i$
- Joint actions: $\mathcal{A} = \mathcal{A}_1 \times ... \times \mathcal{A}_n$
- Utilities: (preferences)

 $U_i : \mathcal{A} \to R$ $U_i(a) = U_i(a_i, a_{-i})$

(Pure) Nash equilibrium:

$$U_i(a_i^*, a_{-i}^*) = \max_{a_i \in \mathcal{A}_i} U_i(a_i, a_{-i}^*)$$

Setup:

- Resources: ${\cal R}$
- Players: N
- Actions: $\mathcal{A}_i \subseteq 2^{\mathcal{R}}$
- Welfare

$$W^r: 2^N \to R^+$$

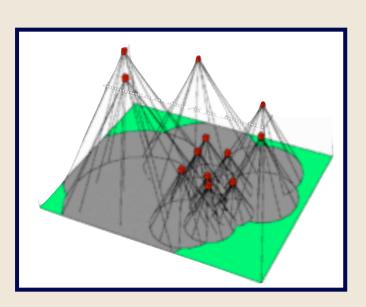
• Global Welfare:

$$W(a) = \sum_{r} W^{r}(a^{r})$$

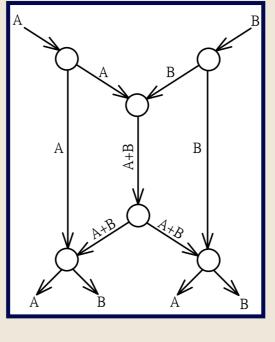
player set that chose resource r

Game design = Utility design

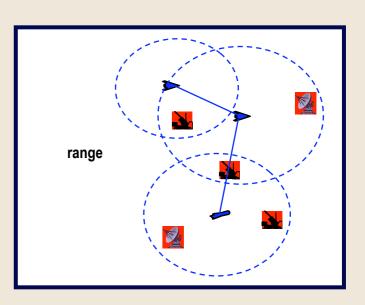
Framework is common to many application domains



Sensor coverage

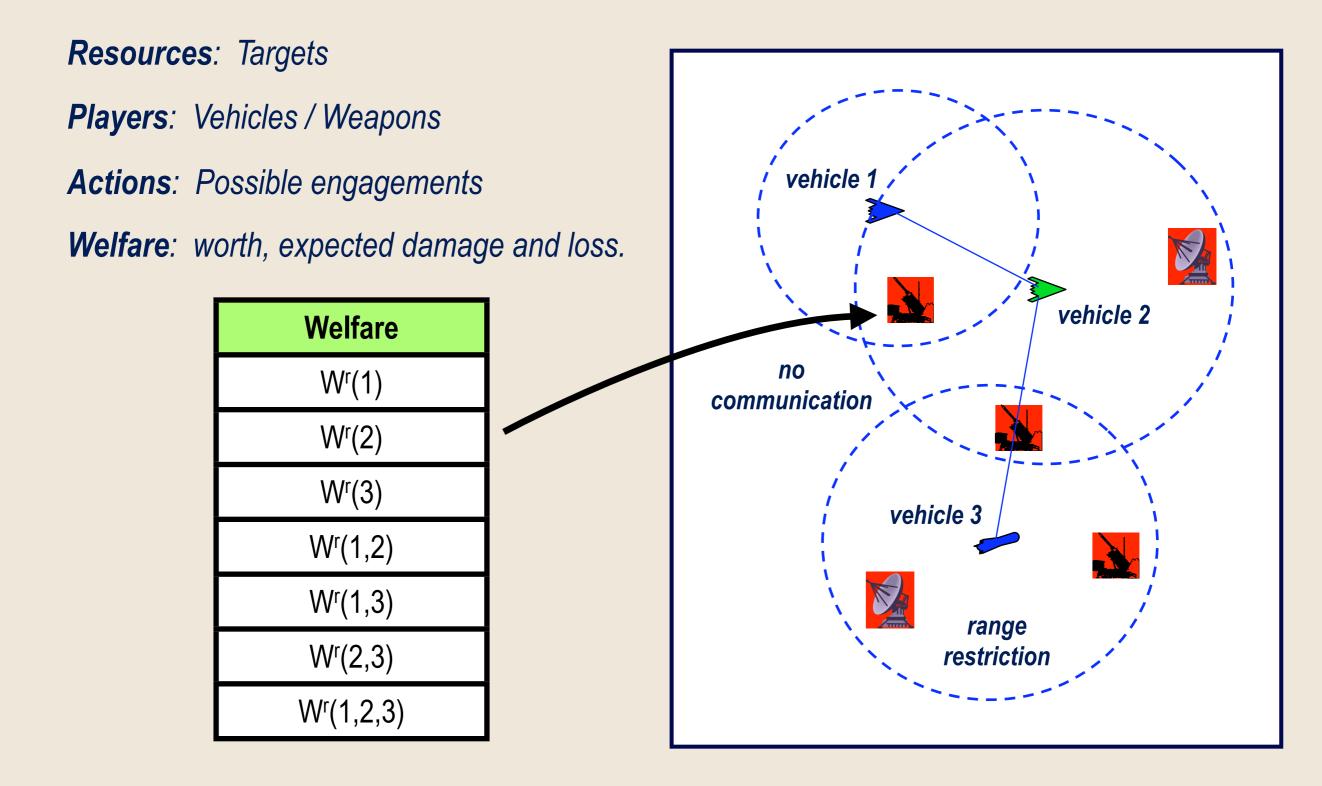


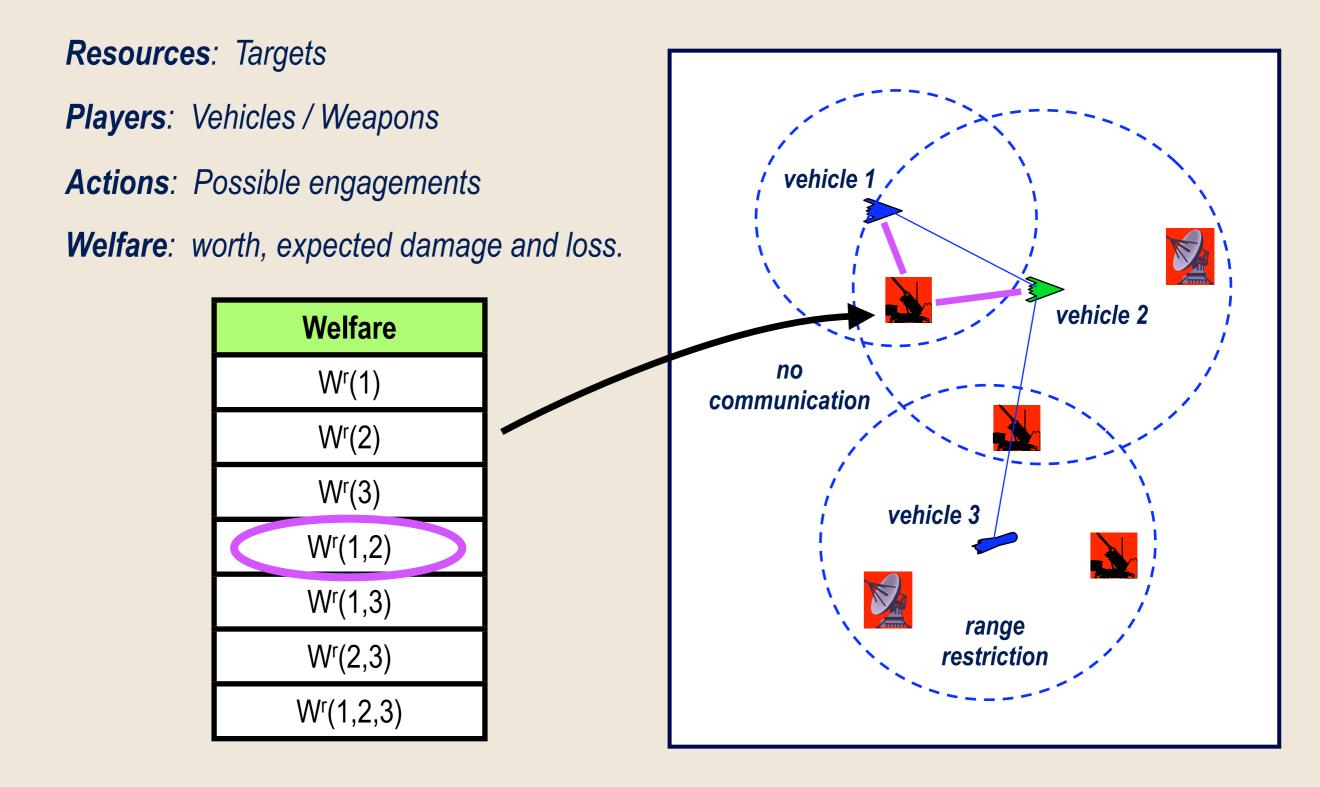
Network Coding

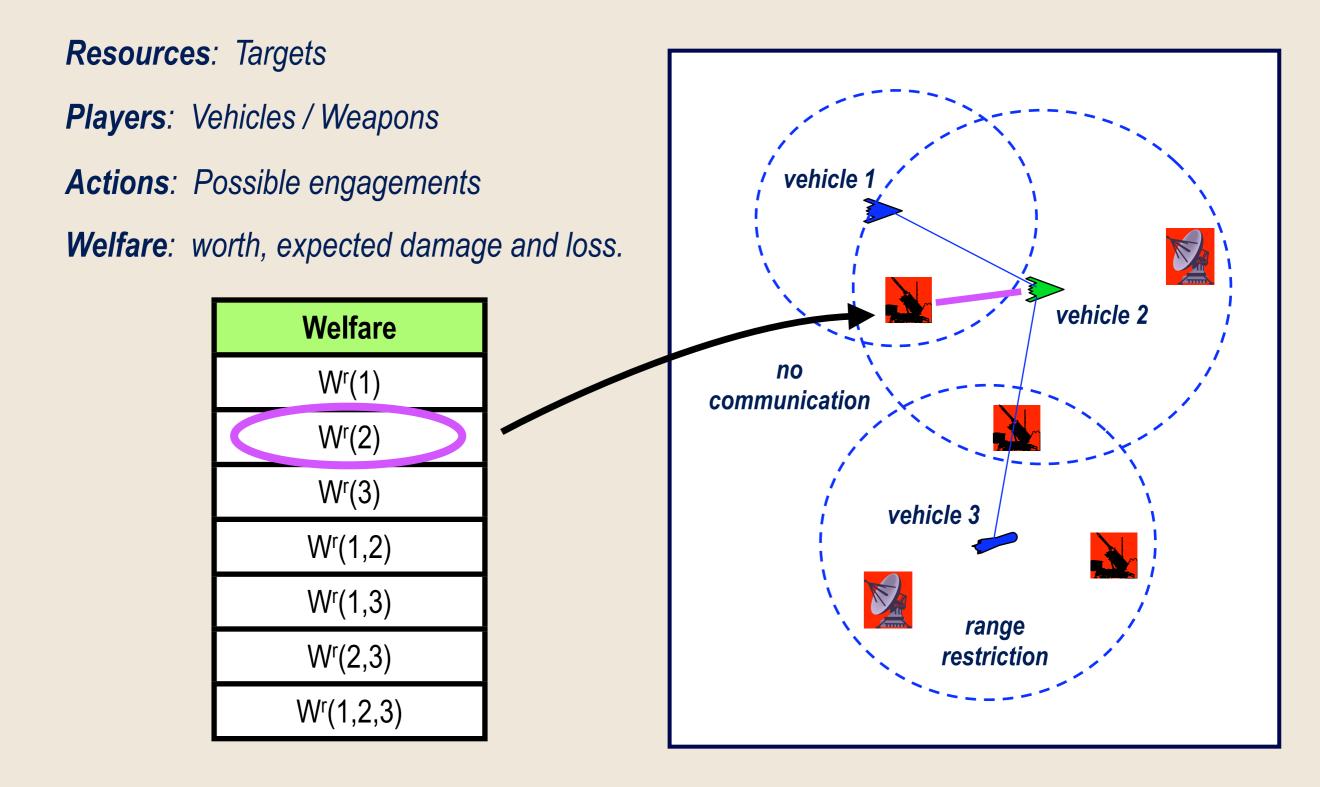


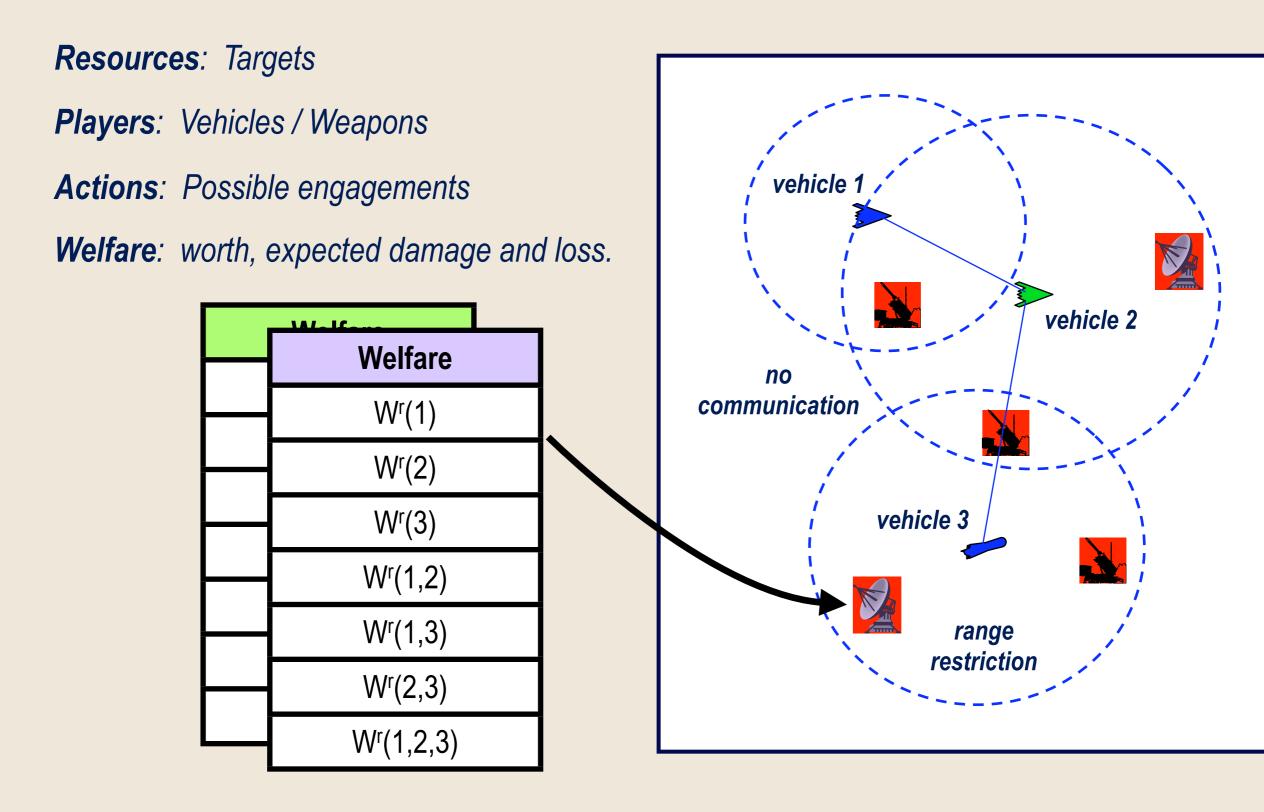
Vehicle Target Assignment

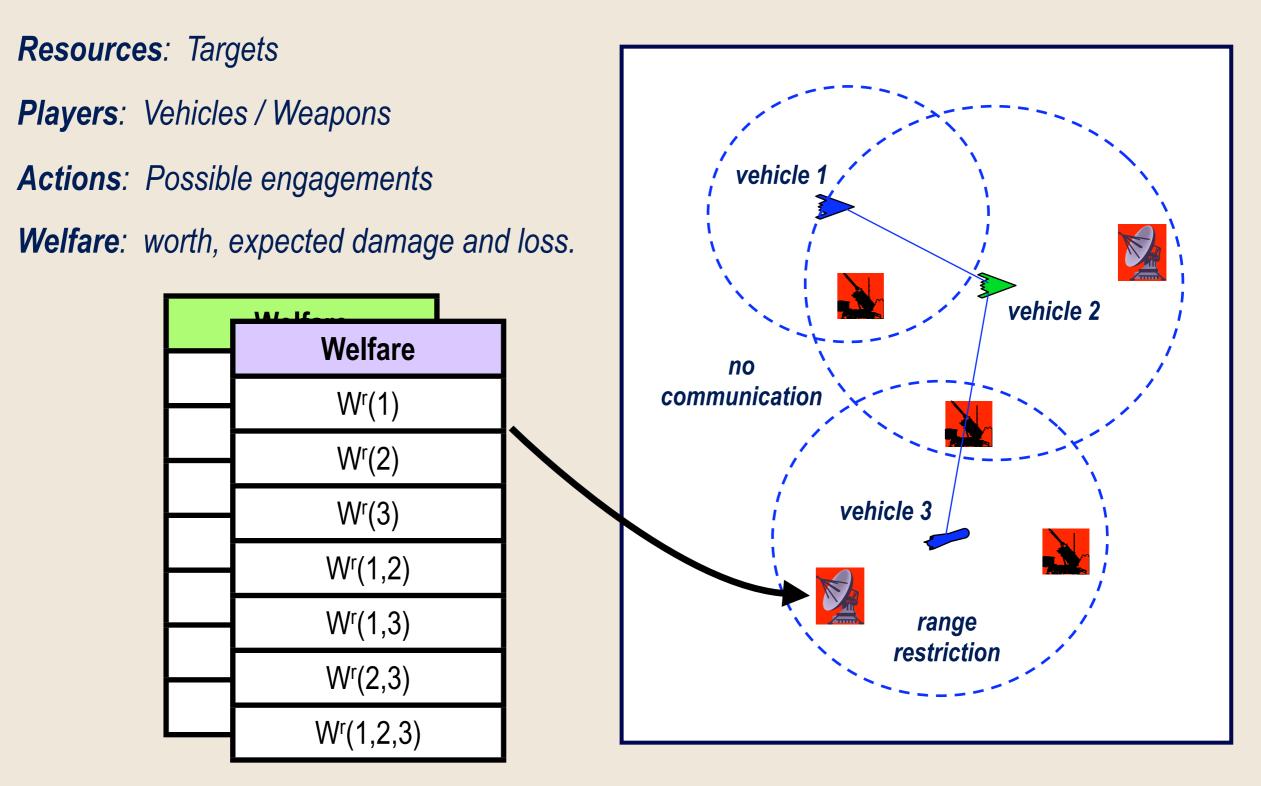
Akella et al., 2002. (Congestion control) Goemans et al., 2004 (Content distribution) Kesselman et al., 2005. (Switching/congestion control) Komali and MacKenzie, 2007. (Topology control in ad-hoc networks) Campos-Nanez et al., 2008. (Power management in sensor networks)









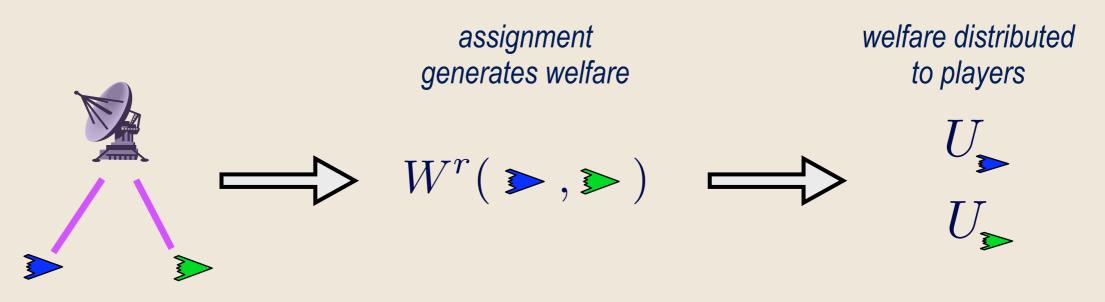


Global objective: Maximize sum of welfare (centralized assignment not feasible)

Goal: Assign each agent a utility such that the resulting game is desirable

- Existence of NE
- Efficiency of NE
- Locality of information
- Tractability
- Budget balance

Approach: View like a cost sharing problem



distribution rule

$$\begin{array}{c} & & & \\ & &$$

distribution rule

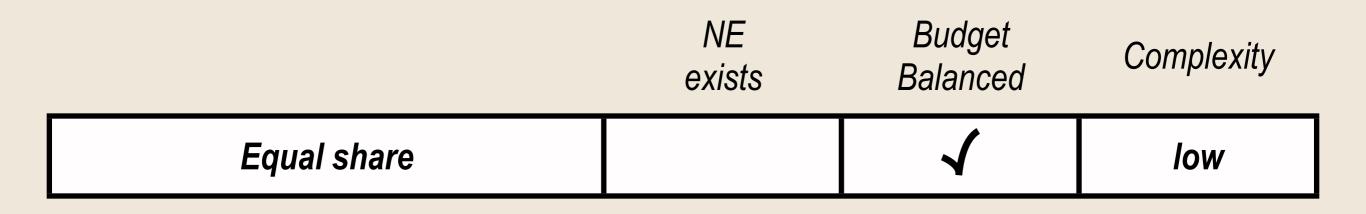
Utility structure:
$$U_i(a) = \sum_{r \in a_i} f^r(i, a^r) W^r(a^r)$$
Properties of distribution rule:depends only on
local information1. $f^r(i, a^r) \ge 0$ Budget Balanced:2. $r \notin a_i \Rightarrow f^r(i, a^r) = 0$ Budget Balanced:3. $\sum_i f^r(i, a^r) \le 1$ $W(a) = \sum U_i(a)$

$$\begin{array}{c} & & \\ & &$$

distribution rule

Utility structure:
$$U_i(a) = \sum_{r \in a_i} f^r(i, a^r) W^r(a^r)$$
Properties of distribution rule: $Are \ cost \ sharing \ methodologies \ useful \ in \ designing \ utilities?$ 1. $f^r(i, a^r) \ge 0$ 2. $r \notin a_i \Rightarrow f^r(i, a^r) = 0$ 3. $\sum_i f^r(i, a^r) \le 1$

$$U_i(a_i, a_{-i}) = \sum_{r \in a_i} \frac{1}{|a^r|} W^r(a^r)$$

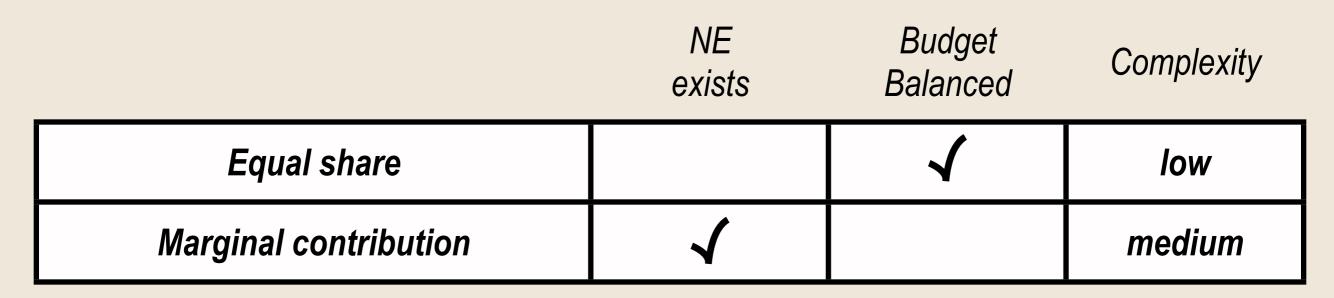


** If welfare function is anonymous, then NE exists.

(Monderer and Shapley, 1996)

$$W^r(a^r) = W^r(|a^r|)$$

$$U_i(a_i, a_{-i}) = \sum_{r \in a_i} W^r(a^r) - W^r(a^r \setminus i)$$



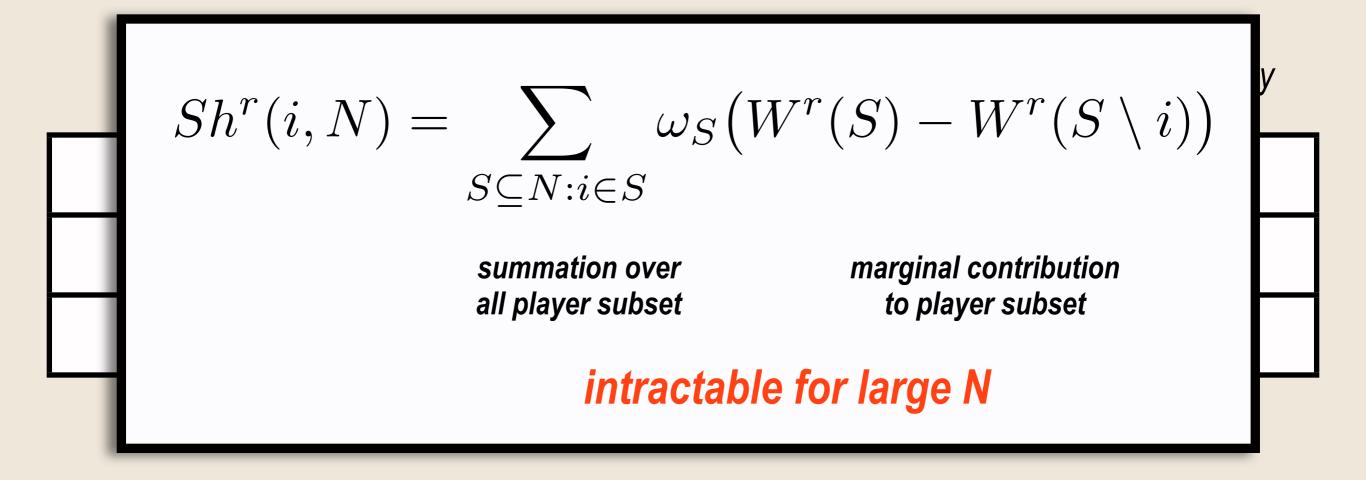
(Wolpert and Tumor, 1999)

$$U_i(a_i, a_{-i}) = \sum_{r \in a_i} Sh^r(i, a^r)$$

	NE exists	Budget Balanced	Complexity
Equal share		\checkmark	low
Marginal contribution	\checkmark		medium
Shapley value	\checkmark	\checkmark	high

(builds upon Hart and Mas-Collell, 1989)

$$U_i(a_i, a_{-i}) = \sum_{r \in a_i} Sh^r(i, a^r)$$



Summary

	NE exists	Budget Balanced	Complexity
Equal share		\checkmark	low
Marginal contribution	\checkmark		medium
Shapley value	\checkmark	\checkmark	high

Tradeoff: Properties vs. Complexity

Is there anything else?

- ...
- No, (weighted) SV only rule that guarantees NE + BB in all games. [Chen, Roughgarden & Valiant, 2008]: Network formation games (uniform)

Yes if we restrict attention to special classes of games [JRM & Wierman, 2008]: Not restricted to SV in some settings

Can we provide efficiency guarantees for general welfare functions?

Price of AnarchyPrice of Stability $POA = \inf_{G} \min_{a^{ne} \in G} \frac{W(a^{ne})}{W(a^{opt})}$ $POS = \inf_{G} \max_{a^{ne} \in G} \frac{W(a^{ne})}{W(a^{opt})}$ worst case performance of any NEworst case performance of best NE

(independent of number of game specifics)

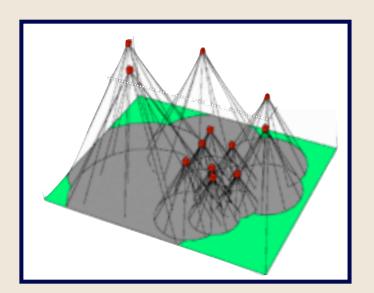
No. In general a NE can be arbitrarily bad.

Yes if welfare is *submodular* (decreasing marginal welfare)

• Submodularity (decreasing marginal welfare)

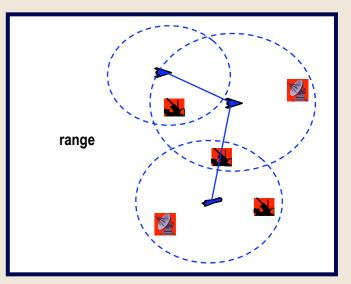
 $W(S+s) - W(S) \ge W(S'+s) - W(S') \qquad S \subset S' \subset N$

• Submodularity can be exploited to improve efficiency



Sensor coverage

Andreas Krause (Caltech)



Vehicle Target Assignment

• Submodularity (decreasing marginal welfare)

 $W(S+s) - W(S) \ge W(S'+s) - W(S') \qquad S \subset S' \subset N$

• Submodularity can be exploited to improve efficiency

Theorem: For any distributed welfare game where[JRM & Wierman, 2008]
[Vetta, 2002](i) Resource specific welfare functions are submodular[Vetta, 2002](ii) Utilities are greater than or equal to marginal contribution
 $U_i(a_i, a_{-i}) \ge W(a_i, a_{-i}) - W(\emptyset, a_{-i})$
then if a NE exists, the price of anarchy is $\ge 1/2$, i.e., $W(a^{ne})$
 $W(a^{opt}) \ge \frac{1}{2}$

	NE exists	Budget Balanced	Complexity	POS	POA
Marginal contribution	\checkmark		medium		1/2
Shapley value	\checkmark	\checkmark	high		1/2

Theorem: For any distributed welfare game where

[JRM & Wierman, 2008] [Vetta, 2002]

(i) Resource specific welfare functions are submodular

(ii) Utilities are greater than or equal to marginal contribution

 $U_i(a_i, a_{-i}) \ge W(a_i, a_{-i}) - W(\emptyset, a_{-i})$

then if a NE exists, the price of anarchy is \geq 1/2, i.e.,

 $\frac{W(a^{\rm ne})}{W(a^{\rm opt})} \ge \frac{1}{2}$

	NE exists	Budget Balanced	Complexity	POS	POA
Marginal contribution	\checkmark		medium	1	1/2
Shapley value	\checkmark	\checkmark	high	?	1/2

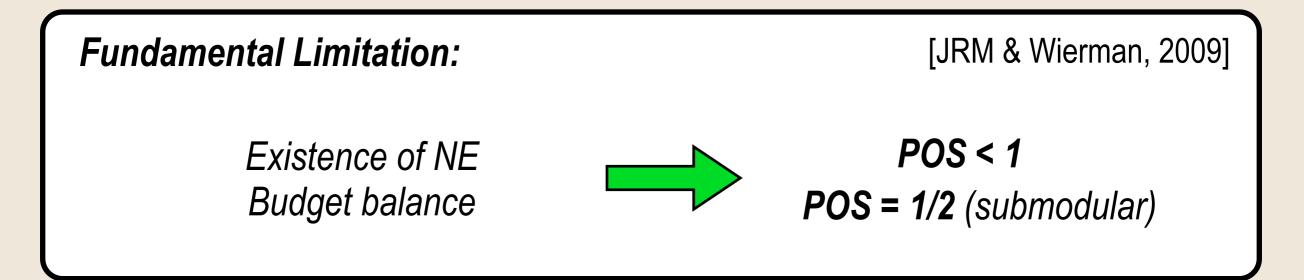
Best known *centralized* approximation algorithms: (1-1/e) = 0.63

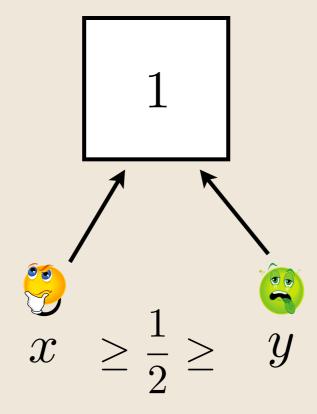
What about price of stability?

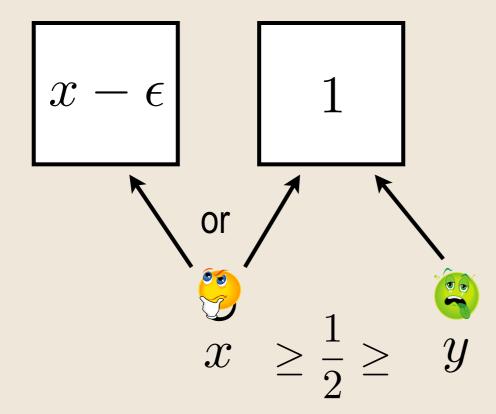
	NE exists	Budget Balanced	Complexity	POS	POA
Marginal contribution	\checkmark		medium	1	1/2
Shapley value	\checkmark	\checkmark	high	?	1/2

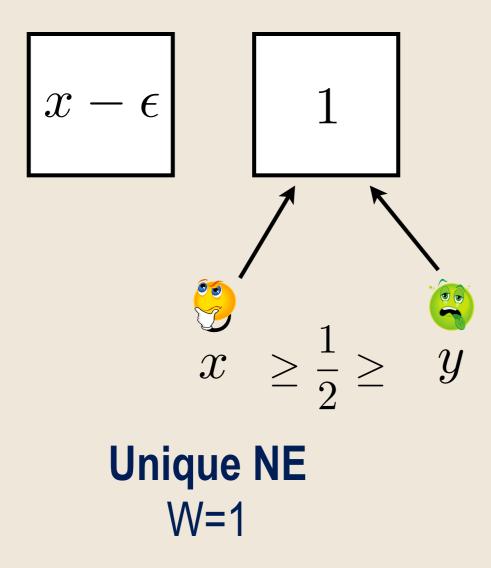
Best known *centralized* approximation algorithms: (1-1/e) = 0.63

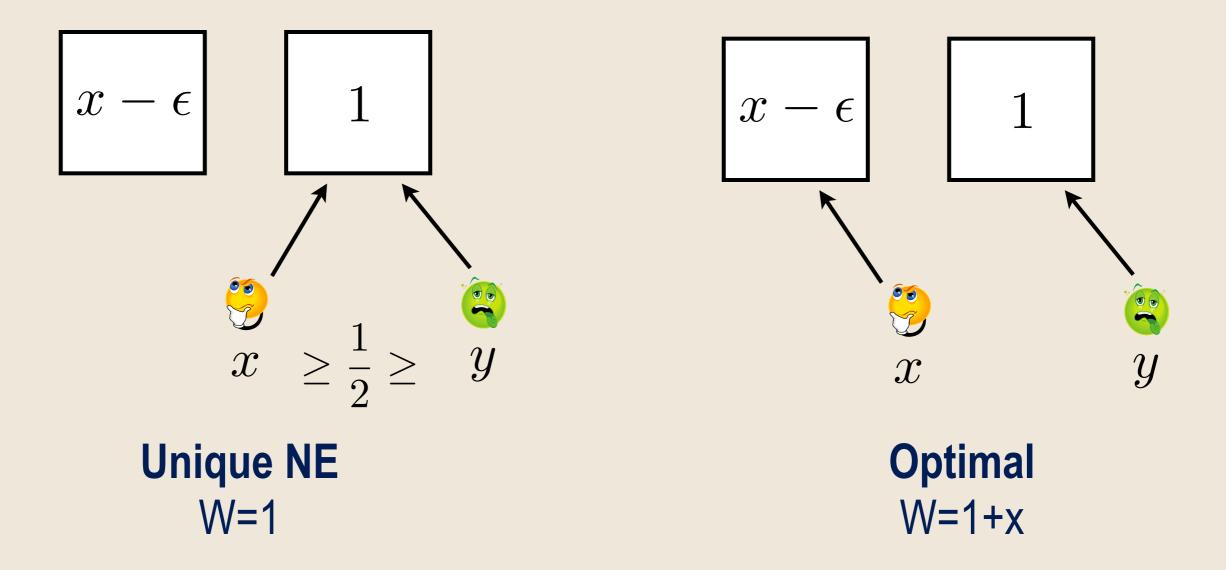
What about price of stability?



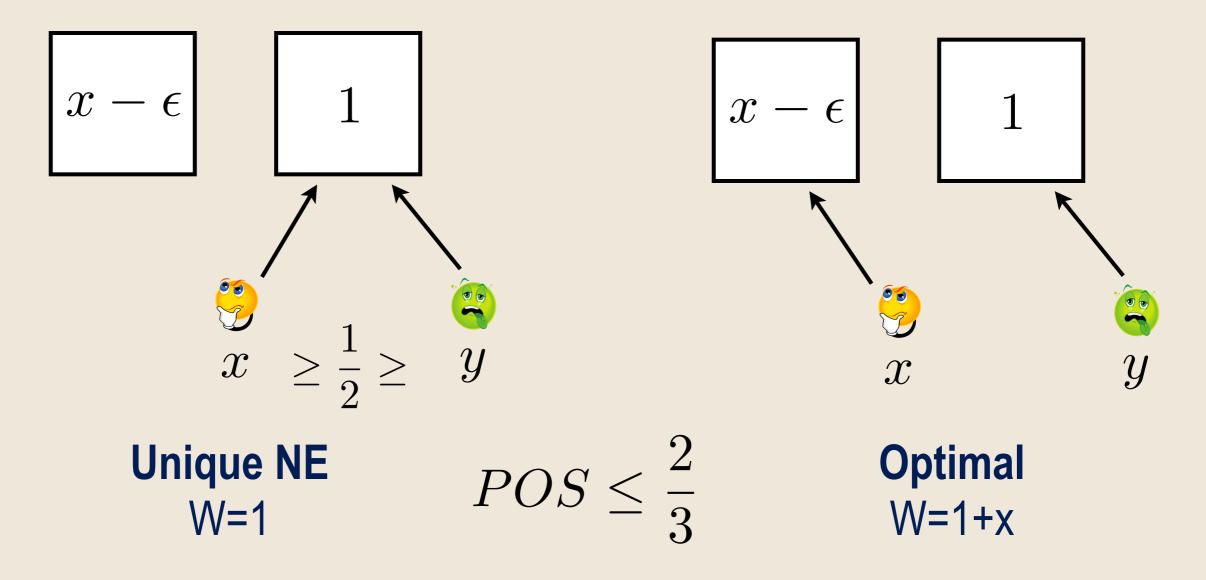








Direction: distribution rule game (POS=1) Submodular welfare functions of the form $W^r(a^r) = c$ for all $a^r \neq \emptyset$



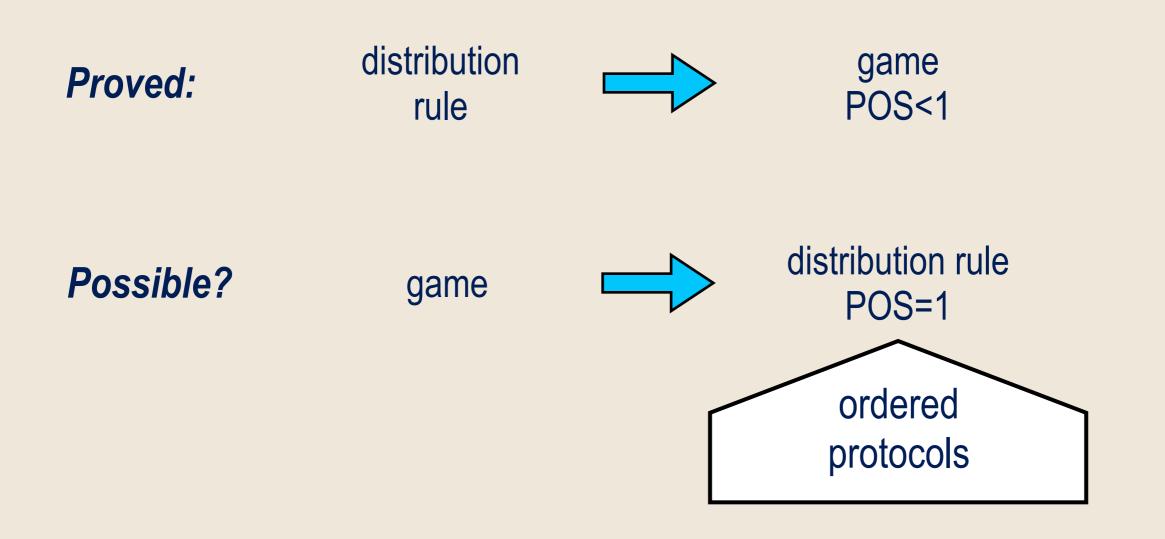
By increasing the number of players we can drive POS to 1/2

	NE exists	Budget Balanced	Complexity	POS	POA
Marginal contribution	\checkmark		medium	1	1/2
Shapley value	\checkmark	\checkmark	high	1/2	1/2
		A	onflict betwe	en	

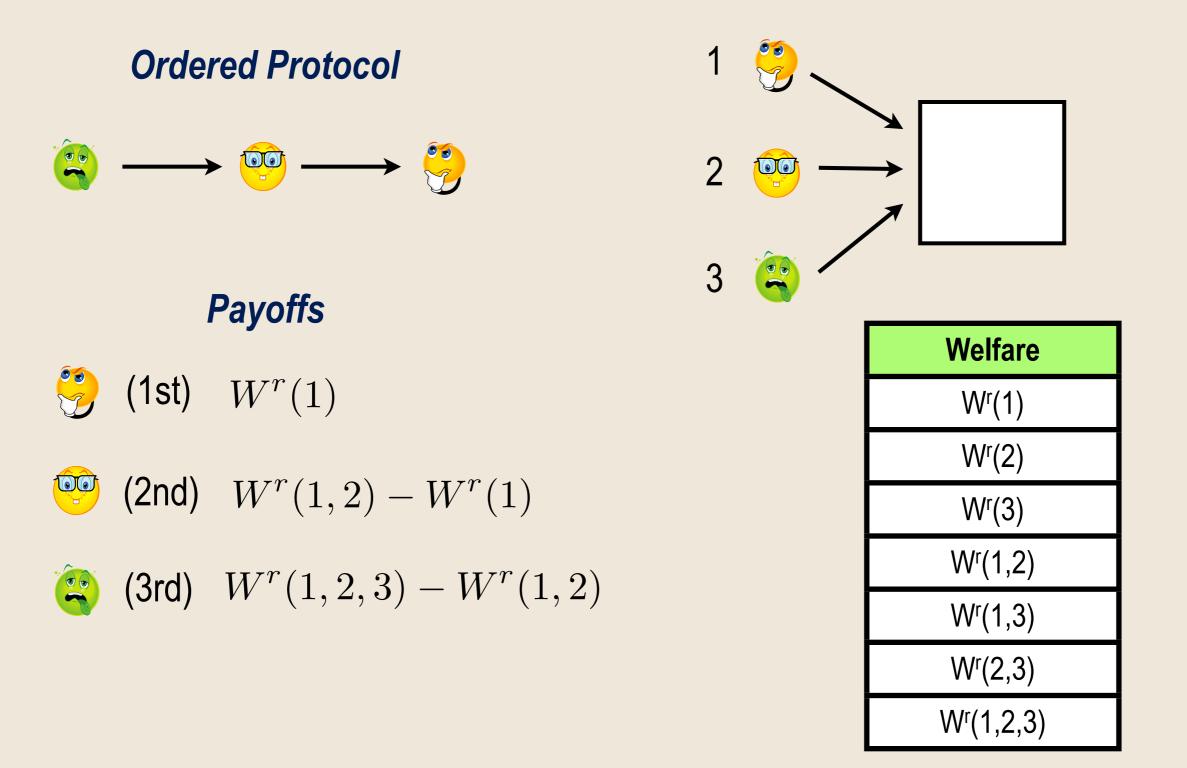
budget balanced and efficiency

Is it possible to overcome limitations by conditioning utilities on more information?

Recap



Ordered Protocol



Ordered Protocol

Payoffs

- (1st) $W^{r}(1)$
- (2nd) $W^r(1,2) W^r(1)$

(3rd)
$$W^r(1,2,3) - W^r(1,2)$$

$$= W^r(1,2,3)$$

Properties

Budget Balanced

Ordered Protocol

Payoffs

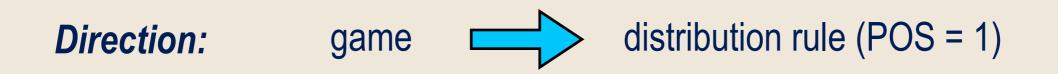
Properties

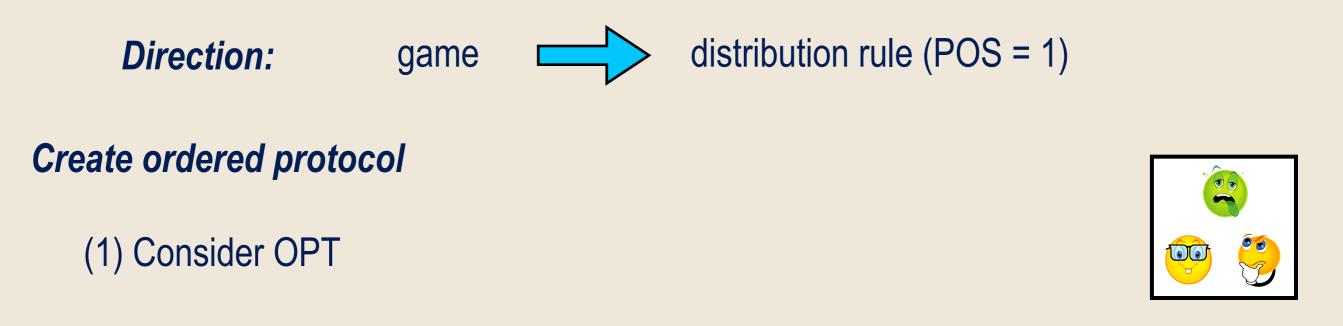
Budget Balanced U ≥ Marginal Contribution

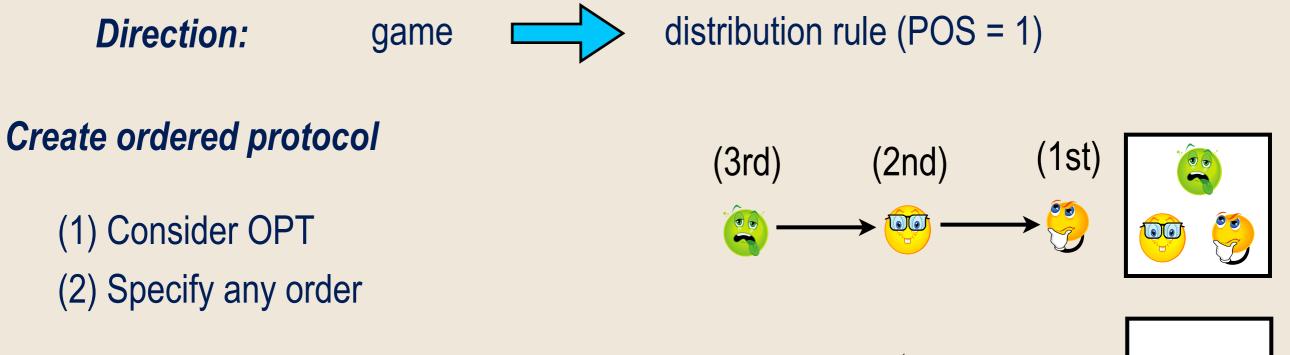
 $\begin{array}{ll} & \underbrace{\textcircled{\ }} \\ & \underbrace{(1st)} & W^{r}(1) \\ & \underbrace{\textcircled{\ }} \\ & \underbrace{(2nd)} & W^{r}(1,2) - W^{r}(1) \\ & \underbrace{\textcircled{\ }} \\ & \underbrace{(3rd)} & W^{r}(1,2,3) - W^{r}(1,2) \\ & \underbrace{\swarrow} \\ & \underbrace{(1,2,3)} \\ & \underbrace{W^{r}(1,2,3)} \\ & \underbrace{W^{r}(1,$

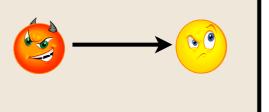
Last player's utility equal to marginal contribution

Can we use ordered protocols to guarantee POS = 1 for a given game?







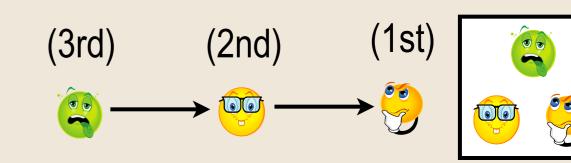


game

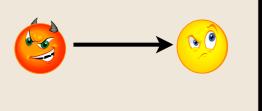
Create ordered protocol

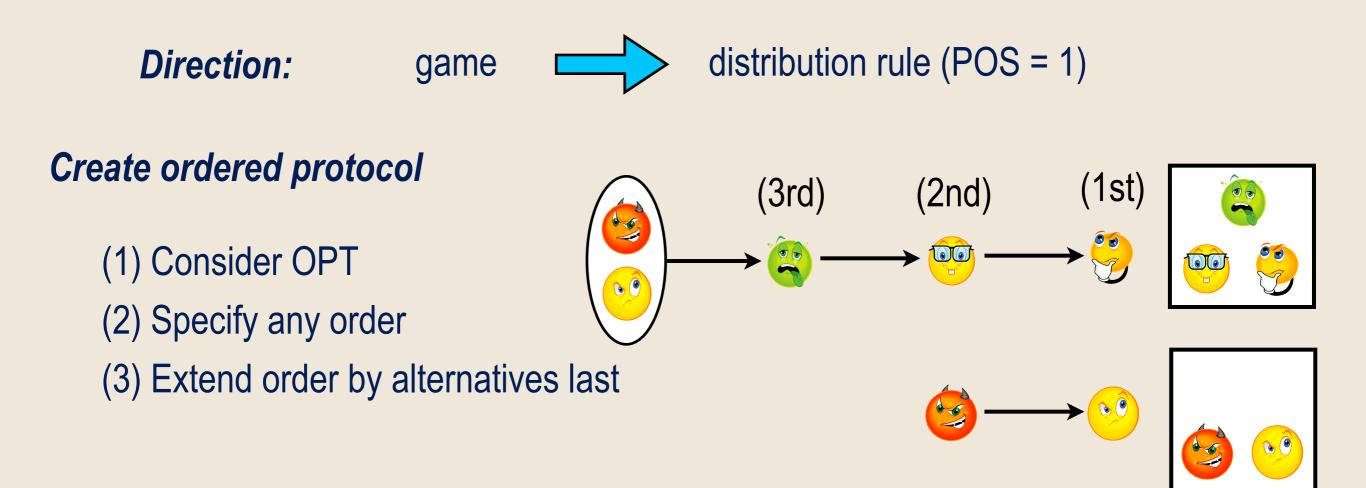
Direction:

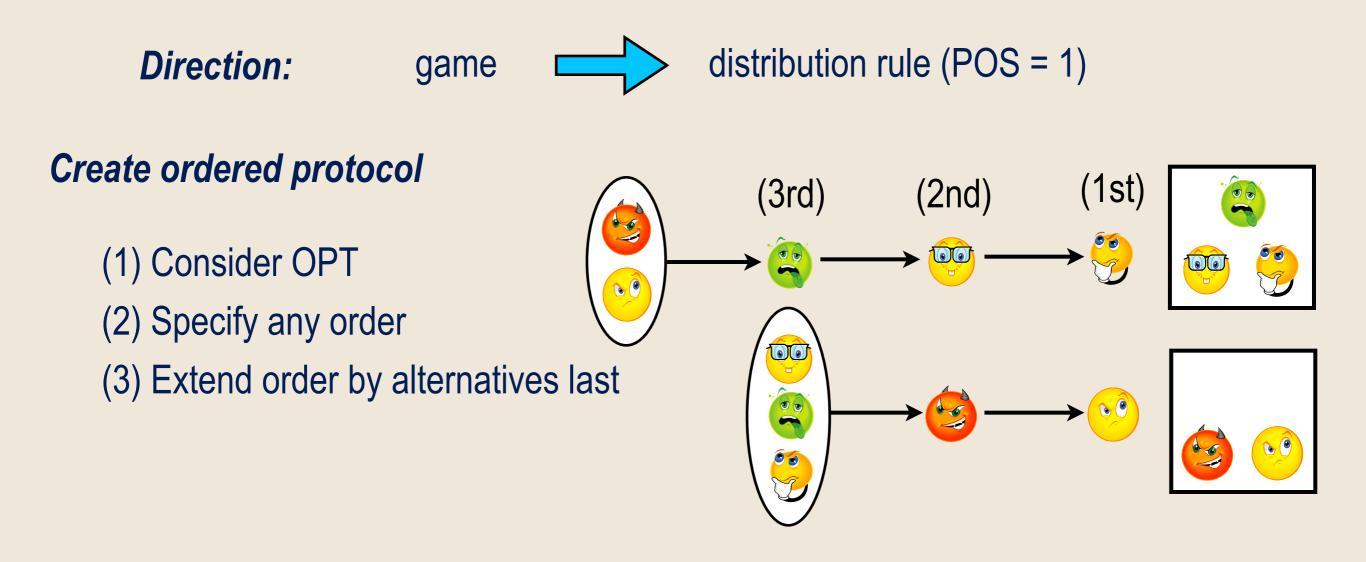
- (1) Consider OPT
- (2) Specify any order
- (3) Extend order by alternatives last

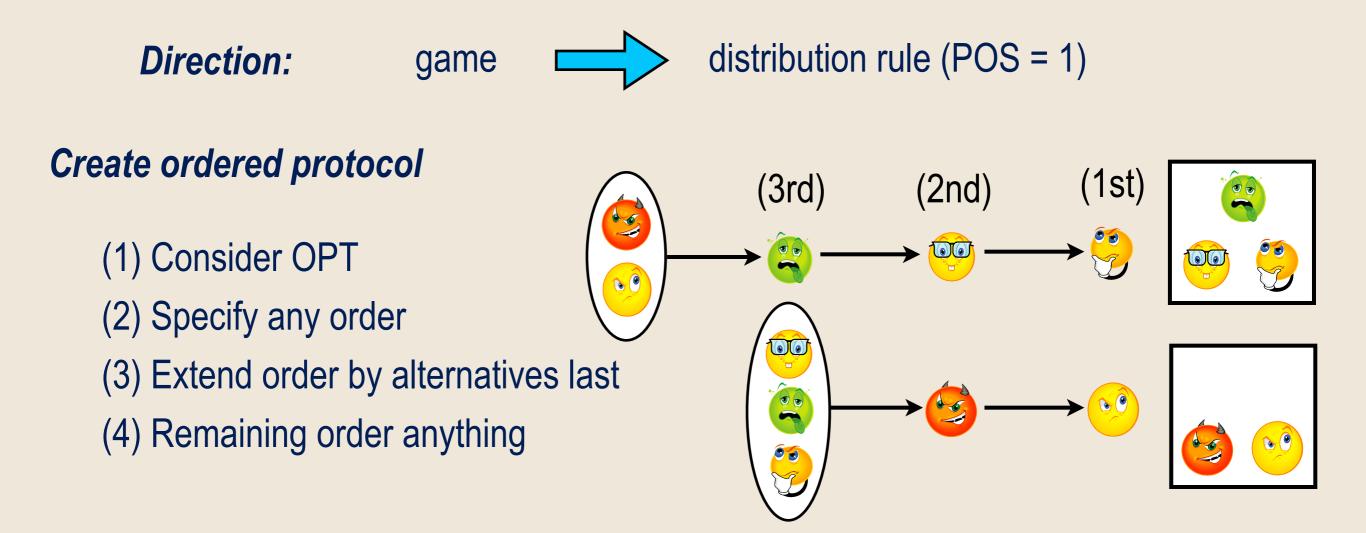


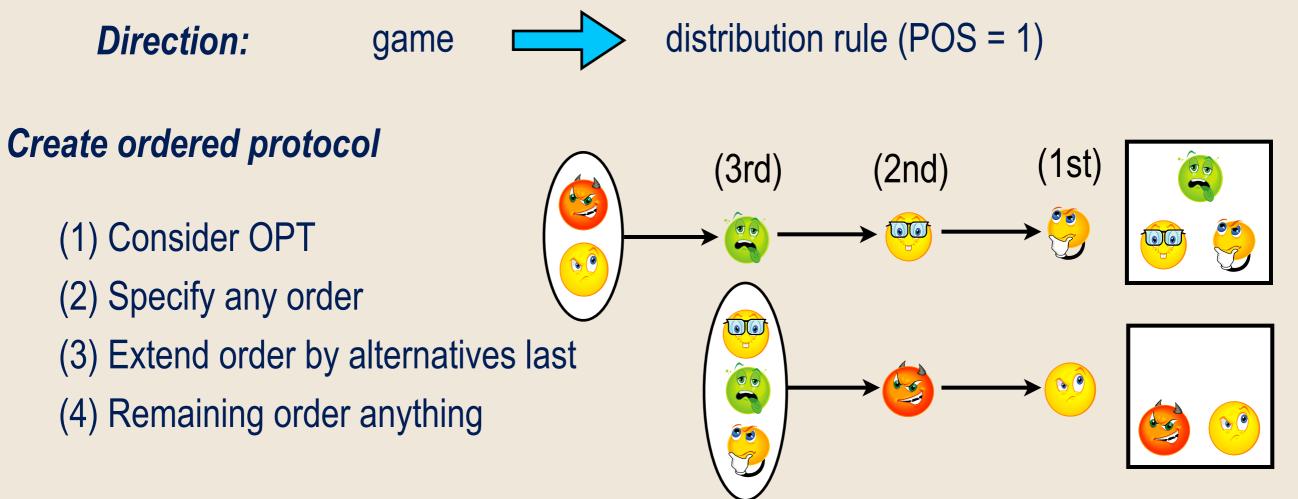
distribution rule (POS = 1)





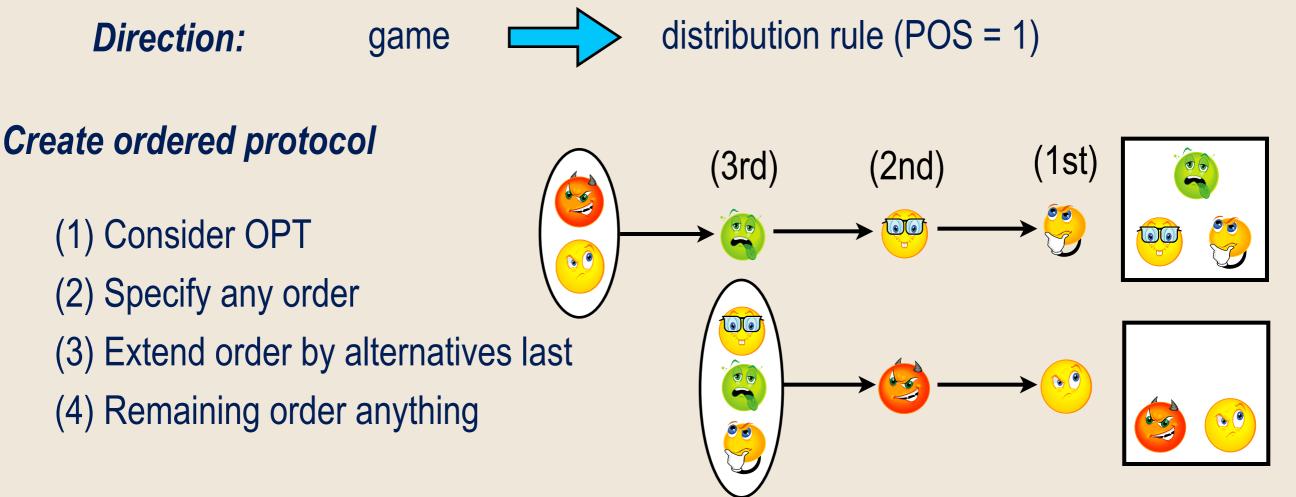






Utility at OPT satisfies

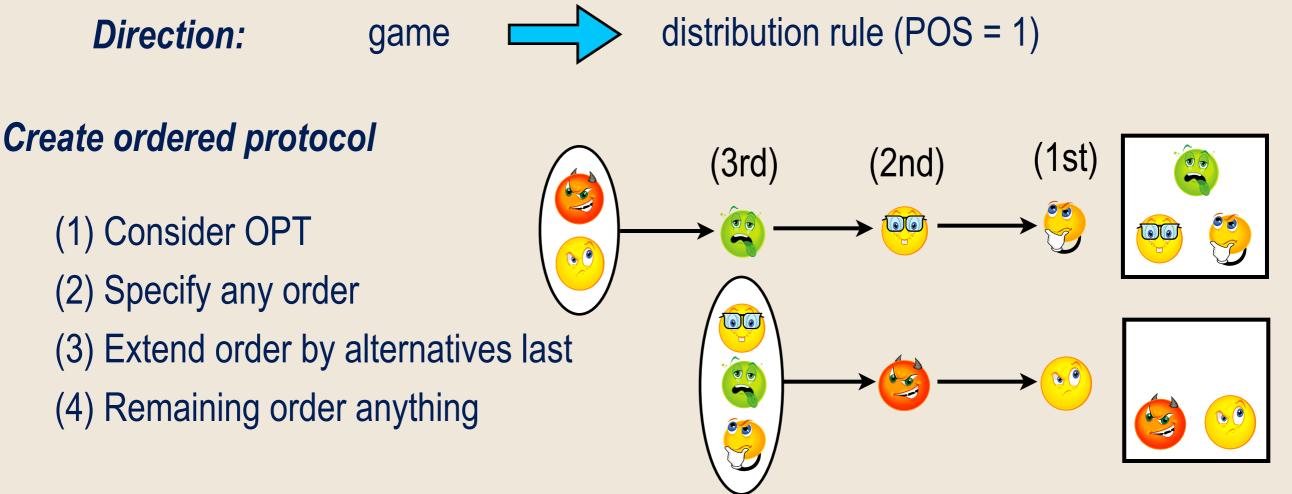
$$U_i(a^{\text{opt}}) \ge W(a^{\text{opt}}) - W(\emptyset, a^{\text{opt}}_{-i})$$
$$U_i(a'_i, a^{\text{opt}}_{-i}) = W(a'_i, a^{\text{opt}}_{-i}) - W(\emptyset, a^{\text{opt}}_{-i})$$



Utility at OPT satisfies

$$U_i(a^{\text{opt}}) \ge W(a^{\text{opt}}) - W(\emptyset, a^{\text{opt}}_{-i})$$
$$U_i(a'_i, a^{\text{opt}}_{-i}) = W(a'_i, a^{\text{opt}}_{-i}) - W(\emptyset, a^{\text{opt}}_{-i})$$

 $U_i(a'_i, a^{\text{opt}}_{-i}) > U_i(a^{\text{opt}}) \Rightarrow W(a'_i, a^{\text{opt}}_{-i}) > W(a^{\text{opt}})$

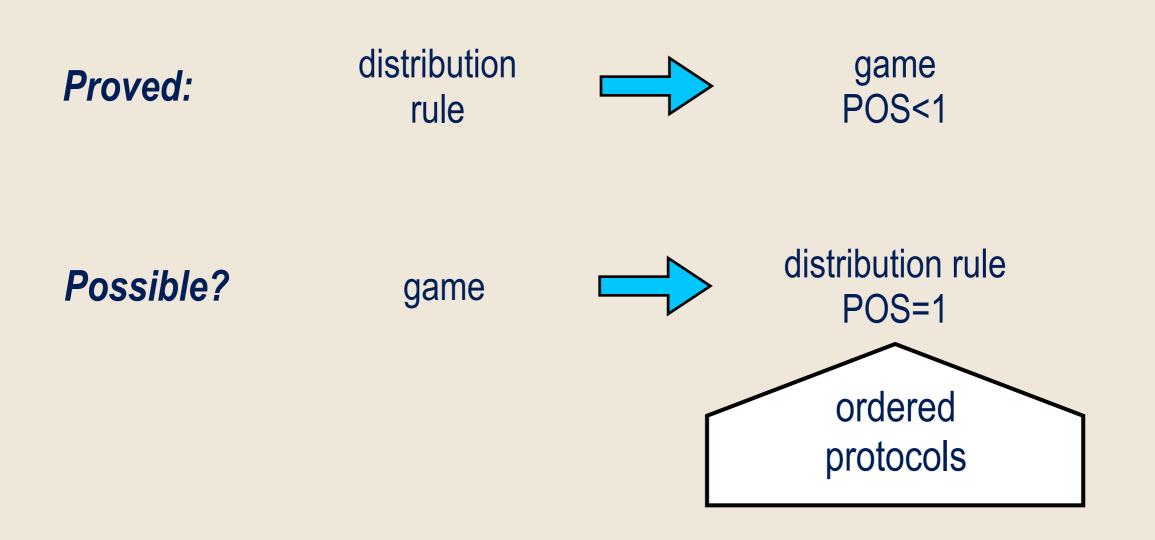


Utility at OPT satisfies

$$U_i(a^{\text{opt}}) \ge W(a^{\text{opt}}) - W(\emptyset, a^{\text{opt}}_{-i})$$
$$U_i(a'_i, a^{\text{opt}}_{-i}) = W(a'_i, a^{\text{opt}}_{-i}) - W(\emptyset, a^{\text{opt}}_{-i})$$

 $U_i(a'_i, a^{\text{opt}}_{-i}) > U_i(a^{\text{opt}}) \implies W(a'_i, a^{\text{opt}}_{-i}) > W(a^{\text{opt}}) \quad \text{(OPT = NE)}$

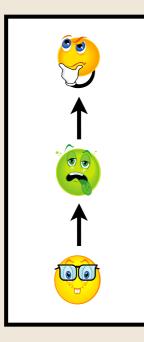
Recap

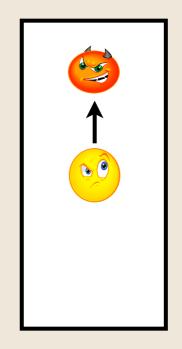


Do we need to condition the distribution rule on the game?

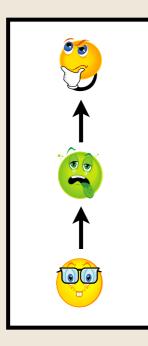
No. Simple adaptive dynamics can find desired distribution rule.

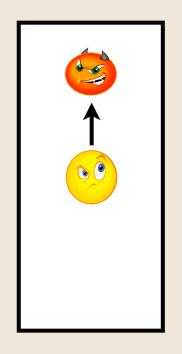
(1) Define an auxiliary state for each resource that specifies the order

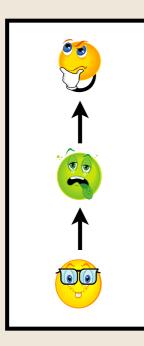


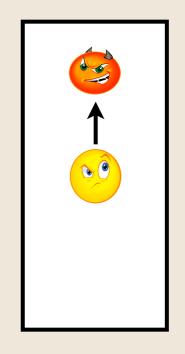


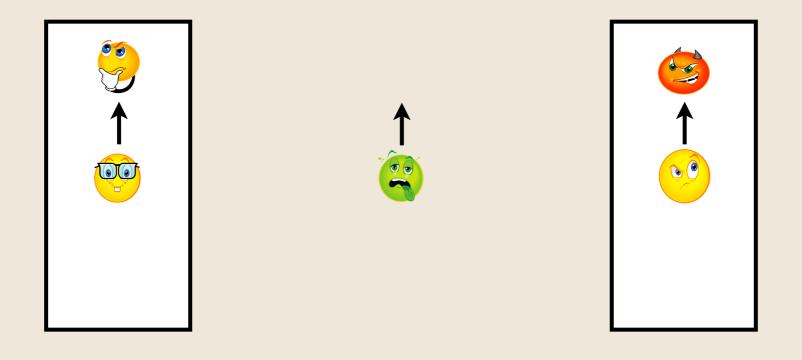
(1) Define an auxiliary state for each resource that specifies the order(2) If user leaves resource, all player behind him move up one spot in the queue

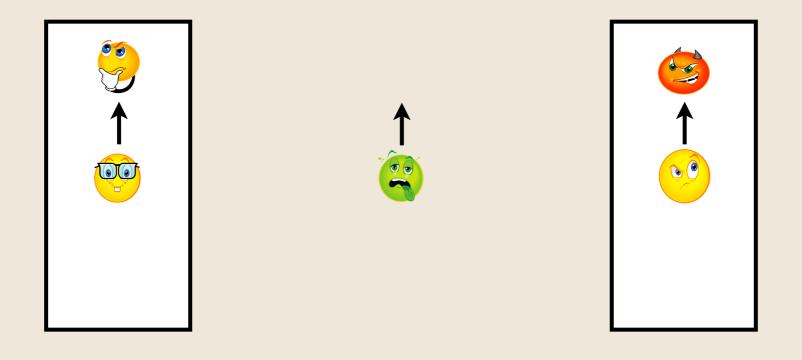


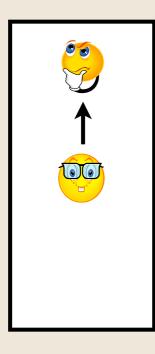


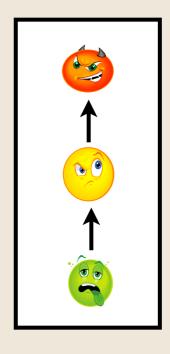




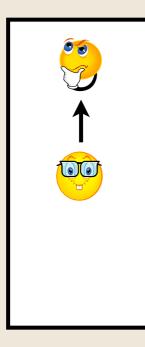




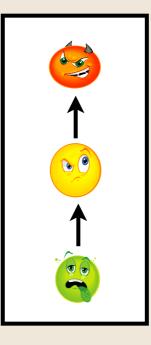




(1) Define an auxiliary state for each resource that specifies the order(2) If user leaves resource, all player behind him move up one spot in the queue(3) If user joins resource, user enter last spot in queue



If OPT is played then it is a NE



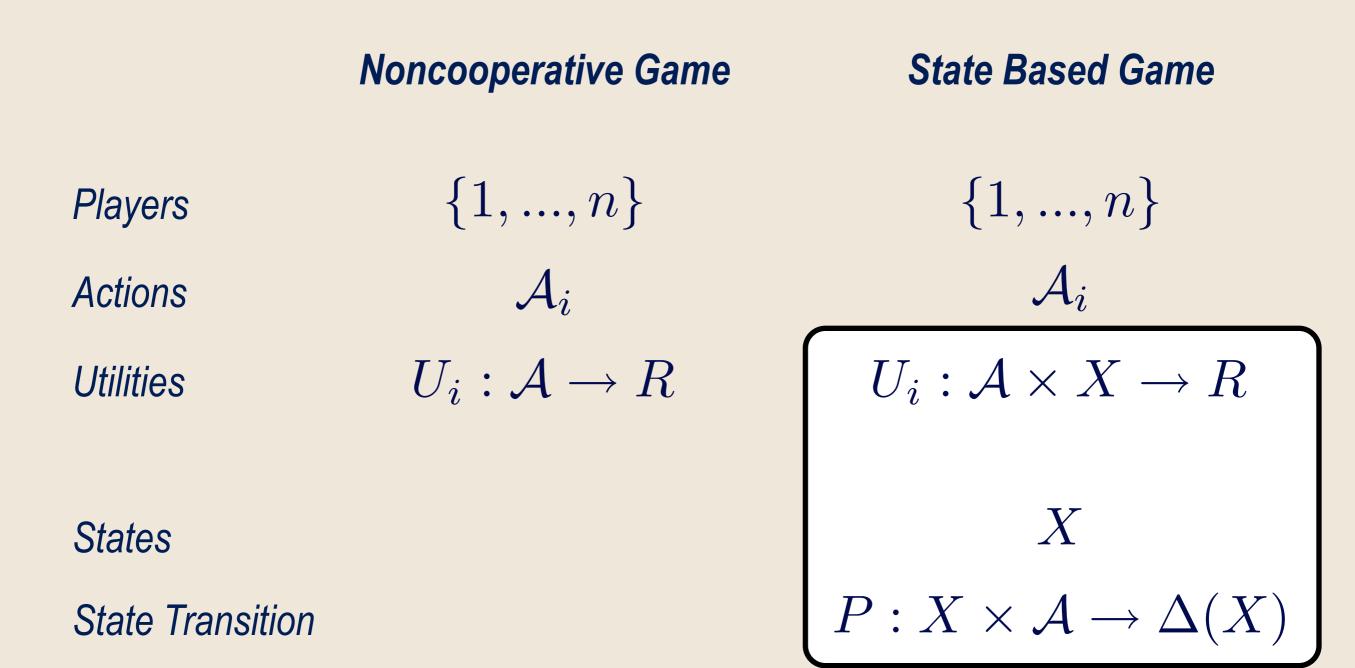
Summary

	NE exists	Budget Balanced	Complexity	POS	POA
Marginal contribution	\checkmark		medium	1	1/2
Shapley value	\checkmark	\checkmark	high	1/2	1/2
Priority based	\checkmark	\checkmark	medium	1	1/2

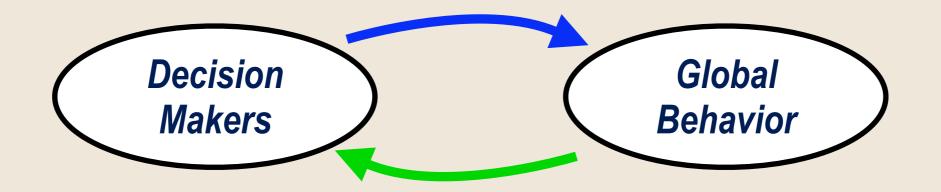
Take Away Points:

- (1) Noncooperative game theory has inherent limitation with respect to distributed control
- (2) Utilizing noncooperative game theory for distributed control is a **design choice**, not a requirement
- (3) Many of the limitations can be overcome by moving beyond noncooperative games (introducing auxiliary state variable)

Summary



Extra flexibility in design can be utilized to improve performance



Thank You!