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Engineering systems

Network Coding

Trend:  Transition from centralized to local decision making

Local processing (manageable)
Reduces communication

Robustness

Characterization
Coordination

Efficiency

Appeal Challenges

range 

Vehicle Target AssignmentSensor coverage

How should we design distributed engineering systems?



Features of distributed design: 
Local decisions

Local information

Global behavior depends on local decisions

Game Theory

Network Coding

range 

Vehicle Target AssignmentSensor coverage

Trend:  Transition from centralized to local decision making

Engineering systems



Game theory

Decision
Makers

Global
Behavior

model as
“game”

game theory

Descriptive Agenda:

Modeling

social system

Reasonable description of sociocultural phenomena?

Matches available experimental/observational data?

Metrics:



Game theory

Decision
Makers

Global
Behavior

model as
“game”

social system engineering system

desired
global behavior

Prescriptive Agenda:

Distributed robust optimization

game theory

distributed control

Asymptotic global behavior?
Communication/Information requirement?
Computation requirement?
Convergence rates?

Metrics: Design parameters:
Decision makers
Objective/Utility functions
Decision/Learning rule



Big picture

Game theory for distributed robust optimization

Part #1: 
model interactions as game

decision makers / players
possible choices

local objective functions

Goal: Emergent global behavior is desirable

Appeal:
available distributed learning algorithms

robustness to uncertainties
self-interested users?

Challenges:
convergence rates?

Part #2: 
local agent decision rules

informational dependencies
processing requirements
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Outline

Existence of (pure) NE
Efficiency of NE

Locality of information
Tractability 

Budget balance

Goal: Establish methodology for designing desirable utility functions

Outline:

- Propose framework to study utility design: Distributed welfare games

- Identify methodologies that guarantees desirable properties

- Identify fundamental limitations 

- Propose new framework to overcome limitations



Game theory

Non-cooperative game:

• Players:

• Actions:

• Joint actions:

• Utilities: 

ai ∈ Ai

(preferences)

(Pure) Nash equilibrium:

N = {1, 2, ..., n}

Ui(a∗i , a
∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i)

A = A1 × ...×An

Ui : A→ R

Ui(a) = Ui(ai, a−i)



Resource allocation games

R

Ai ⊆ 2R

W (a) =
∑

r

W r(ar)

• Resources:

• Players:

• Actions:

• Welfare

• Global Welfare:

N

W r : 2N → R+

Setup:

player set that chose resource r

Game design = Utility design



Resource allocation games

Framework is common to many application domains

Akella et al., 2002. (Congestion control)
Goemans et al., 2004 (Content distribution)

Kesselman et al., 2005.  (Switching/congestion control)
Komali and MacKenzie, 2007. (Topology control in ad-hoc networks)

Campos-Nanez et al., 2008. (Power management in sensor networks)

Network Coding

range 

Vehicle Target AssignmentSensor coverage



Example: Vehicle target assignment 

Resources:  Targets 

Players:  Vehicles / Weapons

Actions:  Possible engagements

Welfare:  worth, expected damage and loss.

Welfare
Wr(1)
Wr(2)
Wr(3)

Wr(1,2)
Wr(1,3)
Wr(2,3)

Wr(1,2,3)

range
restriction

vehicle 1

vehicle 2

vehicle 3

G. Arslan et al., “Autonomous vehicle-target assignment: a game theoretical formulation,” 2007.

no
communication
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Welfare
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Wr(3)
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Wr(1,2,3)

Example: Vehicle target assignment 

Resources:  Targets 

Players:  Vehicles / Weapons

Actions:  Possible engagements

Welfare:  worth, expected damage and loss.

Welfare
Wr(1)
Wr(2)
Wr(3)

Wr(1,2)
Wr(1,3)
Wr(2,3)

Wr(1,2,3)

range
restriction

vehicle 1

vehicle 2

vehicle 3

no
communication

Global objective:  Maximize sum of welfare (centralized assignment not feasible)
G. Arslan et al., “Autonomous vehicle-target assignment: a game theoretical formulation,” 2007.



Utility design

Goal:  Assign each agent a utility such that the resulting game is desirable

- Existence of NE

- Efficiency of NE

- Locality of information

- Tractability 

- Budget balance

Approach: View like a cost sharing problem

distribution rule

assignment 
generates welfare

W r( , )

welfare distributed
to players

U

U



Distributed welfare games

Utility structure:

Properties of distribution rule:

1.

2.

3. W (a) =
∑

Ui(a)

Budget Balanced:
fr(i, ar) ≥ 0

distribution rule

W r( , )
U

U

r /∈ ai ⇒ fr(i, ar) = 0

depends only on
local information

Ui(a) =
∑

r∈ai

fr(i, ar)W r(ar)

∑

i

fr(i, ar) ≤ 1



Distributed welfare games

Utility structure:

Properties of distribution rule:

1.

2.

3. W (a) =
∑

Ui(a)

Budget Balanced:
fr(i, ar) ≥ 0

distribution rule

W r( , )
U

U

r /∈ ai ⇒ fr(i, ar) = 0

depends only on
local information

Ui(a) =
∑

r∈ai

fr(i, ar)W r(ar)

∑

i

fr(i, ar) ≤ 1

Are cost sharing 
methodologies useful in 

designing utilities?



Equal share low

Equal share

NE
exists

Budget
Balanced Complexity

W r(ar) = W r(|ar|)

(Monderer and Shapley, 1996)** If welfare function is anonymous, then NE exists.   

Ui(ai, a−i) =
∑

r∈ai

1
|ar|W

r(ar)



Equal share low

Marginal contribution medium

Marginal contribution

NE
exists

Budget
Balanced Complexity

(Wolpert and Tumor, 1999)

Ui(ai, a−i) =
∑

r∈ai

W r(ar)−W r(ar \ i)



Equal share low

Marginal contribution medium

Shapley value high

Shapley value

NE
exists

Budget
Balanced Complexity

(builds upon Hart and Mas-Collell, 1989)

Ui(ai, a−i) =
∑

r∈ai

Shr(i, ar)



Equal share low

Marginal contribution medium

Shapley value high

Shapley value

NE
exists

Budget
Balanced Complexity

(builds upon Hart and Mas-Collell, 1989)

summation over
all player subset

marginal contribution
to player subset

intractable for large N

Shr(i, N) =
∑

S⊆N :i∈S

ωS

(
W r(S)−W r(S \ i)

)

Ui(ai, a−i) =
∑

r∈ai

Shr(i, ar)



Summary

Equal share low

Marginal contribution medium

Shapley value high

NE
exists

Budget
Balanced Complexity

Tradeoff:  Properties vs. Complexity

Is there anything else?

[Chen, Roughgarden & Valiant, 2008]:  Network formation games (uniform)
No, (weighted) SV only rule that guarantees NE + BB in all games.

Yes if we restrict attention to special classes of games
[JRM & Wierman, 2008]:  Not restricted to SV in some settings



Efficiency

Can we provide efficiency guarantees for general welfare functions?

Yes if welfare is submodular (decreasing marginal welfare)

No.  In general a NE can be arbitrarily bad.

(independent of number of game specifics)

Price of Anarchy

worst case performance of any NE

Price of Stability

worst case performance of best NE

POA = inf
G

min
ane∈G

W (ane)
W (aopt)

POS = inf
G

max
ane∈G

W (ane)
W (aopt)



Submodularity

• Submodularity (decreasing marginal welfare)

• Submodularity can be exploited to improve efficiency

W (S + s)−W (S) ≥W (S′ + s)−W (S′) S ⊂ S′ ⊂ N

Andreas Krause 
(Caltech)

range 

Vehicle Target AssignmentSensor coverage



Efficiency of equilibria

• Submodularity (decreasing marginal welfare)

• Submodularity can be exploited to improve efficiency

W (S + s)−W (S) ≥W (S′ + s)−W (S′) S ⊂ S′ ⊂ N

W (S + s)−W (S) ≥W (S′ + s)−W (S′)Theorem: For any distributed welfare game where

    (i) Resource specific welfare functions are submodular

    (ii) Utilities are greater than or equal to marginal contribution

 then if a NE exists, the price of anarchy is     1/2, i.e.,  

[JRM & Wierman, 2008]
[Vetta, 2002]

≥
W (ane)
W (aopt)

≥ 1
2

Ui(ai, a−i) ≥ W (ai, a−i)−W (∅, a−i)



NE
exists

Budget
Balanced Complexity POS

Efficiency

Marginal contribution medium 1/2

Shapley value high 1/2

POA

W (S + s)−W (S) ≥W (S′ + s)−W (S′)Theorem: For any distributed welfare game where

    (i) Resource specific welfare functions are submodular

    (ii) Utilities are greater than or equal to marginal contribution

 then if a NE exists, the price of anarchy is     1/2, i.e.,  

[JRM & Wierman, 2008]
[Vetta, 2002]

≥
W (ane)
W (aopt)

≥ 1
2

Ui(ai, a−i) ≥ W (ai, a−i)−W (∅, a−i)



NE
exists

Budget
Balanced Complexity POS

Efficiency

Marginal contribution medium 1/2

Shapley value high 1/2

POA

Best known centralized approximation algorithms:  (1-1/e) = 0.63

What about price of stability?

1

?



NE
exists

Budget
Balanced Complexity POS

Efficiency

Marginal contribution medium 1/2

Shapley value high 1/2

POA

Best known centralized approximation algorithms:  (1-1/e) = 0.63

What about price of stability?

W (S + s)−W (S) ≥W (S′ + s)−W (S′)
[JRM & Wierman, 2009]Fundamental Limitation:

Existence of NE
Budget balance

POS < 1
POS = 1/2 (submodular)

1

?



Proof

1

x y≥ 1
2
≥

distribution rule game (POS=1)Direction:

Submodular welfare functions of the form                            for all W r(ar) = c ar != ∅
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Proof

x− ε 1

x y≥ 1
2
≥

Unique NE  
W=1

distribution rule game (POS=1)Direction:

Submodular welfare functions of the form                            for all W r(ar) = c ar != ∅



Proof

x− ε 1

x y≥ 1
2
≥

Unique NE  
W=1

1

x y

x− ε

Optimal
W=1+x

distribution rule game (POS=1)Direction:

Submodular welfare functions of the form                            for all W r(ar) = c ar != ∅



Proof

x− ε 1

x y≥ 1
2
≥

POS ≤ 2
3

Unique NE  
W=1

1

x y

x− ε

Optimal
W=1+x

By increasing the number of players we can drive POS to 1/2

distribution rule game (POS=1)Direction:

Submodular welfare functions of the form                            for all W r(ar) = c ar != ∅



NE
exists

Budget
Balanced Complexity POS

Efficiency

Marginal contribution medium 1 1/2

Shapley value high 1/2 1/2

POA

conflict between
budget balanced and efficiency

Is it possible to overcome limitations 
by conditioning utilities on more information?



Recap

distribution
rule

game
POS<1Proved:

game distribution rule 
POS=1Possible?

ordered
protocols



Ordered Protocol

1

2

3
Welfare

Wr(1)
Wr(2)
Wr(3)

Wr(1,2)
Wr(1,3)
Wr(2,3)

Wr(1,2,3)

Ordered Protocol

(1st)

(2nd)

(3rd)

W r(1)

W r(1, 2)−W r(1)

W r(1, 2, 3)−W r(1, 2)

Payoffs



Ordered Protocol

W r(1, 2, 3)=

Ordered Protocol

(1st)

(2nd)

(3rd)

W r(1)

W r(1, 2)−W r(1)

W r(1, 2, 3)−W r(1, 2)

Payoffs

Budget Balanced

Properties



Ordered Protocol

Ordered Protocol

(1st)

(2nd)

(3rd)

W r(1)

W r(1, 2)−W r(1)

W r(1, 2, 3)−W r(1, 2)

Payoffs

Budget Balanced

Properties

U > Marginal Contribution_

≥W r(1, 2, 3)−W r(2, 3)

≥W r(1, 2, 3)−W r(1, 3)

= W r(1, 2, 3)−W r(1, 2)

Last player’s utility equal to marginal contribution 

Can we use ordered protocols to guarantee POS = 1 for a given game?



Efficiency

distribution rule (POS = 1)gameDirection:
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(1) Consider OPT

Create ordered protocol

distribution rule (POS = 1)gameDirection:
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Efficiency

(1) Consider OPT
(2) Specify any order
(3) Extend order by alternatives last
(4) Remaining order anything

(1st)(2nd)(3rd)

Utility at OPT satisfies

Ui(aopt) ≥ W (aopt)−W (∅, aopt
−i )

Ui(a′i, a
opt
−i ) = W (a′i, a

opt
−i )−W (∅, aopt

−i )

Create ordered protocol

distribution rule (POS = 1)gameDirection:



Efficiency

(1) Consider OPT
(2) Specify any order
(3) Extend order by alternatives last
(4) Remaining order anything

(1st)(2nd)(3rd)

Utility at OPT satisfies

Ui(a′i, a
opt
−i ) > Ui(aopt) ⇒W (a′i, a

opt
−i ) > W (aopt)

Ui(aopt) ≥ W (aopt)−W (∅, aopt
−i )

Ui(a′i, a
opt
−i ) = W (a′i, a
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−i )−W (∅, aopt
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Efficiency

(1) Consider OPT
(2) Specify any order
(3) Extend order by alternatives last
(4) Remaining order anything

(1st)(2nd)(3rd)

Utility at OPT satisfies

Ui(a′i, a
opt
−i ) > Ui(aopt) ⇒W (a′i, a

opt
−i ) > W (aopt)

Ui(aopt) ≥ W (aopt)−W (∅, aopt
−i )

Ui(a′i, a
opt
−i ) = W (a′i, a

opt
−i )−W (∅, aopt

−i )

(OPT = NE)

Create ordered protocol

distribution rule (POS = 1)gameDirection:



Recap

game distribution rule 
POS=1

distribution
rule

game
POS<1Proved:

Possible?

ordered
protocols

No. Simple adaptive dynamics can find desired distribution rule.  

Do we need to condition the distribution rule on the game?



Priority Based Distribution Rule
(1) Define an auxiliary state for each resource that specifies the order
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Priority Based Distribution Rule
(1) Define an auxiliary state for each resource that specifies the order
(2) If user leaves resource, all player behind him move up one spot in the queue
(3) If user joins resource, user enter last spot in queue 

If OPT is played
then it is a NE



Summary

NE
exists

Budget
Balanced Complexity POS

Marginal contribution medium 1 1/2

Shapley value high 1/2 1/2

Priority based medium 1 1/2

POA

(1)  Noncooperative game theory has inherent limitation with respect to distributed control
(2)  Utilizing noncooperative game theory for distributed control is a design choice,
       not a requirement
(3)  Many of the limitations can be overcome by moving beyond noncooperative games 
      (introducing auxiliary state variable)

 

Take Away Points:
 



Summary

Noncooperative Game

Players

Actions

Utilities

Ai

Ui : A→ R

{1, ..., n}

Extra flexibility in design can be utilized to improve performance

States

State Transition

State Based Game

Ui : A×X → R

X

P : X ×A→ ∆(X)

Ai

{1, ..., n}



Conclusions

Thank You!

Decision
Makers

Global
Behavior


